

Catalysis Today 42 (1998) 85-92



# Two-bed catalytic system for NO<sub>x</sub>/SO<sub>x</sub> removal

Jesús Blanco\*, Ana Bahamonde, Esperanza Alvarez<sup>1</sup>, Pedro Avila

Instituto de Catálisis y Petroleoquímica, CSIC, Camino de Valdelatas s/n, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain

#### Abstract

A combined monolithic catalytic system has been developed by which  $NO_x$  and  $SO_x$  are successively removed from flue gases produced by the combustion of coal and other fossil fuels. The honeycomb catalysts used in this study have been manufactured at industrial scale by extrusion of pastes which contain all the precursors or their components. Nitrogen oxides are removed in the first stage of this combined process by selective catalytic reduction with ammonia, using a  $DeNO_x$  monolithic catalyst based on Ti-V-W oxides dispersed in the structure of a natural magnesium silicate. The outlet gases pass through a second monolithic bed which oxidizes  $SO_2$  to  $SO_3$ ; this  $DeSO_x$  monolithic catalyst is based on vanadium oxides and alkali pyrosulfates supported on diatomaceous earth. Laboratory scale activity tests were carried out using small honeycomb sections cut from the industrial catalysts. At a temperature of  $450^{\circ}C$ , molar conversions of 90% and 80% for  $NO_x$  and  $SO_x$  were achieved respectively, without any ammonia slip. The monolithic structure, and mechanical properties of both catalysts allows their operation in high dust configurations.  $\bigcirc$  1998 Elsevier Science B.V. All rights reserved.

Keywords: Catalyst; Monolith; Selective catalytic reduction;  $DeNO_x$ ; Sulfur dioxide oxidation;  $DeSO_x$ ;  $TiO_2$ ;  $V_2O_5$ ; Magnesium silicate; Diatomaceous earth

### 1. Introduction

Public health and acid rain control considerations have led to worldwide action to reduce  $SO_x$  and  $NO_x$  emissions from coal-fired boilers. Nowadays, the current global emphasis on environmental protection is being directed towards the development of technologies for  $NO_x$  and  $SO_x$  removal, where further reductions in their emission levels are required in accordance with the application of more stringent regulations.

5854789; e-mail: jblanco@icp.csic.es

Latterly, emission control techniques from coal and other fossil fuels have been developed with significant improvements in pre, post and in-combustion.

Wet lime/limestone scrubbers for flue gas desulfuration (FGD) and selective catalytic reduction (SCR) of nitrogen oxides with ammonia are the most widespread post-combustion methods. Limestone injection multi-stage burners (LIMB) are an example of in-combustion technology [1] which reduces simultaneously  $SO_2$  and  $NO_x$  emissions by a relatively simple method, although the required levels are not achieved. Similar processes, where sorbent injection is followed by selective noncatalytic reduction [2] or selective catalytic reduction [3] have been also proposed.

Some efforts have been carried out carbon catalyst technology [4,5]; the process developed by Bergbau–

<sup>\*</sup>Corresponding author. Tel.: 34 91 5854802; fax: 34 91

<sup>&</sup>lt;sup>1</sup>Present address: SRI International, 333 Ravenswood Avenue, Menlo Park, CA 9425, USA.

Forschung GmbH [6] uses active coke as adsorbent for  $SO_2$  (first stage), and as catalyst for nitrogen oxides removal by ammonia (second stage). In the RTI-Waterloo low temperature process [7]  $SO_2$  is oxidized to  $SO_3$  which is removed as sulfuric acid in a series of periodically flushed trickle-bed reactors, the  $SO_2$  freegas is reheated to  $150^{\circ}$ C and mixed with ammonia for  $NO_x$  removal by a SCR process; both catalytic steps employ different types of activated carbon-based catalyst.

Other advanced systems for  $SO_x/NO_x$  removal such as the NOXSO<sup>®</sup> process [8] uses, as regenerable sorbent a high specific surface area  $\gamma$ -alumina support impregnated with sodium carbonate. In other studies a series of materials featuring copper and/or vanadium oxide supported on titania, alumina or a composite alumina-titania carrier were tested for suitability as sorbent/catalysts for the simultaneous removal of  $SO_2$  and  $NO_x$  [9].

In the process reported by Mitsubishi in the early 1980s [10] the catalyst, a mixture of vanadium oxide with potassium, copper or cesium sulfate supported on titania, operates at 380°C for the simultaneous SCR of NO<sub>x</sub> and SO<sub>2</sub> oxidation processes. The SO<sub>3</sub> generated is adsorbed on the fly ash which is easily collected by the electrostatic precipitator. At the same time, a similar simultaneous process was registered by Hitachi and Babcock-Hitachi K.K., [11] using a vanadium oxide (with or without iron oxide) on titania support at 400°C and CaO or CaCO<sub>3</sub> particles for the SO<sub>3</sub> collection.

The catalytic activities of vanadium oxide or chromia supported on titania (with or without activated carbon) in the simultaneous removal of NO and  $SO_2$  were studied by Kasaoka et al. [12]. In this process, the  $SO_3$  produced is fixed on the catalyst surface as ammonium sulfate and the NO is reduced via SCR process at  $130^{\circ}$ C. The sulfate deposited on the catalyst must be periodically removed for regeneration and repeated use of the catalyst.

Some other  $NO_x/SO_x$  removal technologies combine the SCR process with catalytic sulfur dioxide oxidation to sulfur trioxide which is further converted to sulfuric acid. In the  $SNO_x$  process [13,14], after dust removal, the flue gas is preheated to 370°C for  $NO_x$  reduction via conventional SCR technology using ammonia as a reductant over a monolithic catalyst (Tøpsoe DNX catalyst); the products heated to 420°C

pass over an oxidation bed of a  $V_2O_5$  based catalyst conformed in ring shapes, where  $SO_2$  is oxidized to  $SO_3$  which is recovered in a WSA condenser, as concentrated sulfuric acid (94–97%) [15,16]. Dust deposited on the catalyst rings increases the pressure drop across the converter and therefore the catalyst has to be cleaned by mechanical screening at regular intervals.

The DeSONO<sub>x</sub> process (Degussa) [17] is similar to the SNO<sub>x</sub> process, although the sulfuric acid is obtained at a lower concentration (70%). However, in this system both catalysts are installed in a two bed reactor which operates at 450°C, eliminating the need of a preheater between the SCR and SO<sub>2</sub> oxidation units [18].

Recently, Combustion Engineering [19] has registered a process of analogous operational characteristics to those described in the above mentioned  $SNO_x^{(\mathbb{R})}$  and  $DeSONO_x^{(\mathbb{R})}$  processes, which includes a heat recovery system.

In this work, a  $DeNO_x$ – $DeSO_x$  two-bed combined monolithic reactor is presented. In the first bed the nitrogen oxides are selectively reduced by ammonia, to nitrogen and water; and in the second, the sulfur dioxide is oxidized to sulfur trioxide, which can be further converted to sulfuric acid. The monolithic structure, mechanical properties of both catalysts allows their operation in high dust configurations. The reactor runs at  $450^{\circ}$ C without heating between the two catalyst beds, with the subsequent technical simplicity and low operation cost.

## 2. Experimental

### 2.1. Monolithic catalysts

The two proprietary catalysts used in this study were manufactured by extrusion of pastes which contained all the components or precursors of the final catalysts.

The DeNO<sub>x</sub> catalyst was prepared with a mixture of V, W and Ti compounds together with a natural magnesium silicate, following a method similar to described elsewhere [20]. This monolithic catalyst was manufactured in a square-cell shape with a cell density of 7.5 cells cm<sup>-2</sup>, pitch of 0.37 cm, wall thickness of 0.09 cm, geometric surface area of

 $806~\text{m}^2~\text{m}^{-3}$ , and a bulk density of  $0.5~\text{g cm}^{-3}$ . The axial crushing strength values of the monoliths, measured with a Chatillon LTCM Universal Tensile and Spring Tester, were about  $190~\text{kg cm}^{-2}$ .

The DeSO<sub>x</sub> catalyst, based on vanadium oxides and potassium pyrosulfates supported on diatomaceous earth and shaped as a honeycomb structure, was prepared according to a procedure reported elsewhere [21]. The DeSO<sub>x</sub> square-cell monoliths, have a cell density of 4.5 cells cm<sup>-2</sup>, pitch of 0.47 cm, wall thickness of 0.09 cm, geometric surface area of 690 m<sup>2</sup> m<sup>-3</sup>, bulk density of 0.7 g cm<sup>-3</sup> and a crushing strength of around 470 kg cm<sup>-2</sup>.

# 2.2. Activity tests

Catalytic activity measurements were carried out in a monolithic reactor working close to the isothermal axial profile, at the following operation conditions: temperature=450°C, pressure=120 kPa and GHSV (gas hourly space velocity, at normal conditions) from 4000 to 12 000 h<sup>-1</sup>.

Two different sets of experiments were undertaken. Firstly, the behavior of each monolithic catalyst was studied separately in their corresponding reaction. Secondly, a monolithic two-bed catalytic reactor was designed in which  $NO_x$  and  $SO_x$  were successively removed from the flue gases.

Inlet and outlet nitrogen oxides and ammonia contents were analyzed using a Chemiluminescence NO/ $NO_x$  analyzer (Signal Series 400), with an ammonia converter;  $SO_2$  contents were analyzed by Gas Chromatography (Varian 3400), using a photometric detector, and  $SO_3$  measurements were carried out by volumetric analysis [22].

### 2.3. Characterization studies

Samples of monolithic catalysts before and after use in the reaction were studied by the following characterization techniques: BET surfaces areas were measured by nitrogen adsorption–desorption in a Micromeritics ASAP 2000; the pore size distribution was determined by mercury-intrusion using Thermo Quest Pascal 140/240 Porosimeters. The DeNO<sub>x</sub> catalyst was analyzed by a Brucker Model RFS 100 FT-Raman spectrometer, with a NdYAG excitation laser. Thermal gravimetric analysis was carried out on a

Netzsch STA409EP with an air flow of 75 ml min<sup>-1</sup> and a heating rate of 5°C min<sup>-1</sup>.

### 3. Results and discussion

## 3.1. DeNO<sub>x</sub> process

Conventional SCR catalysts operate at temperatures between 300°C and 380°C, trying to avoid undesirable reactions of ammonia or sulfur dioxide with the oxygen present in the inlet-gases. As the operation temperature of the  $DeSO_x$  process is about 450°C, it was necessary to develop a monolithic SCR catalyst with activity and selectivity at this temperature in the presence of  $SO_2$  in order to achieve the denitrification and desulfuration of the gases in an unique reactor.

The finally selected catalyst has 5 wt% tungsten oxide in its composition, because tungsta–titania is characterized by both a larger number and stronger Lewis and Brønsted acid sites compared to vanadia–titania, thus, ensuring higher surface ammonia coverage even at high temperatures [23]. However, the catalyst has a low vanadia content (1 wt%) in order to minimize its activity for the ammonia oxidation reactions. Less attention was given to the oxidation of sulfur dioxide in this  $DeNO_x$  step of the combined process, since sulfur trioxide may be considered as the product of the overall process.

Establishing the working temperature of this  $DeNO_x$  catalyst at  $450^{\circ}C$ , the influence of space velocity and oxygen concentration on the  $NO_x$  conversion were studied to predefined some of the operating conditions for the  $DeNO_x$ – $DeSO_x$  combined process.

The influence of the residence time, 1/GHSV (h), on the nitric oxide conversion and ammonia slip at a temperature of  $450^{\circ}C$  and a total pressure of 120 kPa is shown in Fig. 1. The gas-inlet composition was: NO= NH<sub>3</sub>=SO<sub>2</sub>=1000 ppm; O<sub>2</sub>=5 vol%; N<sub>2</sub>=balance. At a GHSV of around  $10\,000\,h^{-1}$ , nitric oxide conversions of 90% were obtained without ammonia slip. No formation of nitrous oxide was detected.

The inlet oxygen concentration was also studied since this parameter affects the performance of sulfur dioxide oxidation catalysts. At 450°C no influence on the reduction of nitric oxide was observed for oxygen concentrations from 1 to 10 vol%, hence this value

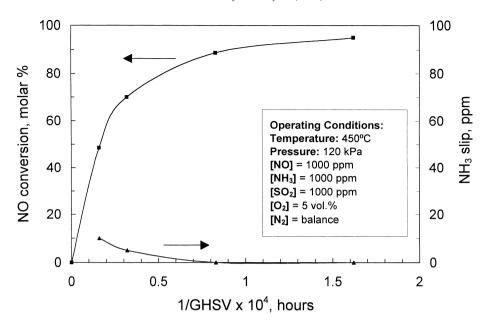



Fig. 1. Variation of the NO conversion and ammonia slip with the residence time. DeNO<sub>x</sub> catalyst.

would be defined by the requirements of the  $DeSO_x$  process.

The textural properties of the fresh and used catalyst are listed in Table 1. It should be noted that the  $DeNO_x$  catalyst exhibits an adequate bimodal pore-size distribution [24] and that the textural values for both samples do not significantly change.

By Laser-Raman spectroscopy of the  $DeNO_x$  catalyst, signals of  $V_2O_5$  were not detected, and only the typical peaks belonging to the anatase phase (638, 517, 394 cm<sup>-1</sup>) were present, indicating that the vanadium oxide remains well dispersed on the titania surface. From SEM-EDX results [25] this catalyst may be described as supported vanadium and tungsten oxides on titania particles dispersed among the magnesium silicate fiber bunches, which enhance the porosity and mechanical properties and allow the configuration of the paste in monolithic form.

## 3.2. $DeSO_x$ process

Different formulations of the  $DeSO_x$  catalyst in monolithic shape were prepared by modifying the paste components and the extrusion parameters looking for a compromise between the conformation procedure, and the mechanical properties and catalytic activity of the monoliths The selected active phase composition of the final catalyst corresponds to a mixture of vanadium oxides dissolved in alkali pyrosulfates which is partly or completely liquid under reaction conditions, similar to conventional sulfuric acid manufacturing catalysts [26]. These melted species are dispersed in the pores of a mixture of diatomaceous earth and natural alkali-earth silicates.

Good performance of this monolithic catalyst is obtained at temperatures above 430°C; lower reaction temperatures result in a loss of catalytic activity due to

Table 1 Textural properties of the  $DeNO_x$  and  $DeSO_x$  catalysts

|                                                        | DeNO <sub>x</sub> catalyst | DeNO <sub>x</sub> used catalyst <sup>a</sup> | DeSO <sub>x</sub> catalyst (green) | DeSO <sub>x</sub> used catalyst <sup>a</sup> |
|--------------------------------------------------------|----------------------------|----------------------------------------------|------------------------------------|----------------------------------------------|
| BET surface area (m <sup>2</sup> g <sup>-1</sup> )     | 97                         | 81                                           | 27                                 | <2                                           |
| Total volume > 8 nm (cm <sup>3</sup> g <sup>-1</sup> ) | 0.58                       | 0.57                                         | 0.27                               | 0.21                                         |
| Average pore diameter (nm)                             | 29 and 49                  | 33 and 46                                    | 78                                 | 784                                          |

<sup>&</sup>lt;sup>a</sup>After 300 h on stream.

dramatic changes in the chemical species (increase of the  $V^{4+}/V^{5+}$  ratio) and in the physical properties (solidification) of the catalyst active phase. Tests with water vapor present in the gas inlet, with concentrations up to 15 vol%, had no influence on the activity of the catalyst.

In Table 1 some textural properties of this monolithic catalyst are given. The "green catalyst" corresponds to the material dried at 110°C before being treated with SO<sub>2</sub> and O<sub>2</sub> to achieve its final chemical composition. After this treatment, a significant increase in the pore diameter with loss of specific surface area is observed, while the total pore volume remains almost constant. No conclusions concerning the pore structure can be drawn because the catalyst was cooled down to room temperature and the real pore distribution might have been modified during the liquid phase condensation processes.

The results of the thermal gravimetric analysis are shown in Table 2. In the "green catalyst", the loss observed in the first temperature range, 100–300°C, corresponds mainly to water, CO<sub>2</sub> and NH<sub>3</sub> liberation. Between 300°C and 800°C the weight losses are assigned to the decomposition of various impurities of the diatomaceous earth and the natural silicates used in the catalyst preparation. The used catalyst

Table 2 Termogravimetric results of the  $DeSO_x$  catalyst

| Temperature range (°C) | Weight loss (%)                    |                                 |  |
|------------------------|------------------------------------|---------------------------------|--|
|                        | DeSO <sub>x</sub> catalyst (green) | DeSO <sub>x</sub> used catalyst |  |
| 100–300                | 4.8                                | 0.0                             |  |
| 300-600                | 7.9                                | 0.0                             |  |
| 600–800                | 2.2                                | 15.7                            |  |

corresponds to a sample which was in operation for 6000 min at  $450^{\circ}\text{C}$ ; the loss observed in the range  $600\text{--}800^{\circ}\text{C}$ , is mainly due to  $SO_2$  from the pyrosulfates decomposition.

The activation of the catalyst was carried out feeding air to the reactor at a GHSV of  $3500 \, h^{-1}$  and raising the reactor temperature at a rate of  $10^{\circ}\text{C}$  per minute up to  $400^{\circ}\text{C}$ . Once that temperature was reached, the inlet gas composition was changed to  $SO_2=1000 \, \text{ppm}; \, O_2=5 \, \text{vol}\%; \, N_2=\text{balance}, \, \text{the flow}$  was increased to  $GHSV=4900 \, h^{-1}$  and the reactor temperature raised to  $450^{\circ}\text{C}$ , at a rate of  $2^{\circ}\text{C min}^{-1}$ . From this point,  $SO_2$  concentration in the outlet gas was analyzed. The results are presented in Fig. 2 where two sections may be distinguished. During

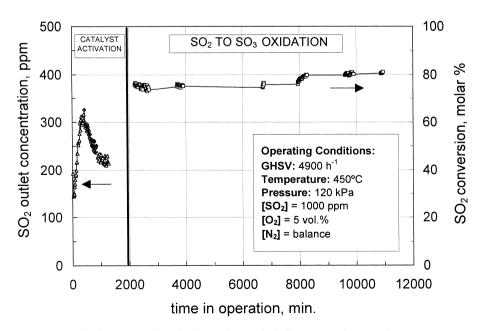



Fig. 2. Start up of the  $DeSO_x$  catalyst at the indicated operation conditions.

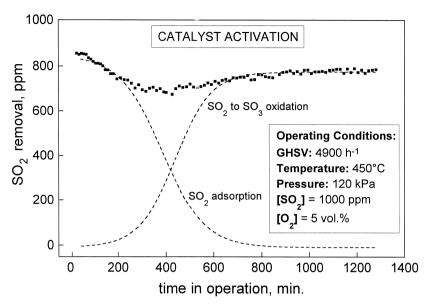



Fig. 3. Simultaneous SO<sub>2</sub> adsorption and SO<sub>2</sub> oxidation during the DeSO<sub>x</sub> catalyst activation.

the first 1400 min the monolith adsorbs SO<sub>2</sub> at a rate which decreases with the time in operation; simultaneously the catalyst active phase is being formed and starts to transform SO<sub>2</sub> to SO<sub>3</sub> at an increasing rate

giving rise to the maximum observed in the left-hand side of Fig. 2; these two processes are represented in Fig. 3 where the above experimental data – expressed as  $SO_2$  removal – may be considered as the sum of the

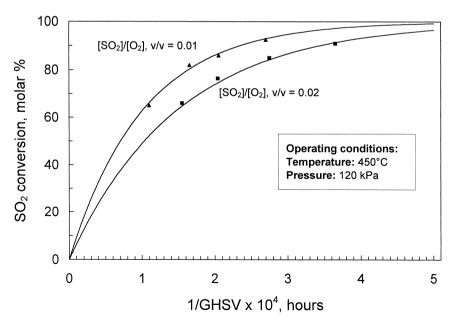



Fig. 4. Variation of the SO<sub>2</sub> conversion, at two SO<sub>2</sub>/O<sub>2</sub> volume inlet ratios, DeSO<sub>x</sub> catalyst.

 $SO_2$  adsorbed on the monolith and the  $SO_2$  transformed to  $SO_3$ .

After the activation period the catalyst seems to reach steady state conditions – right-hand side of Fig. 2 – although a small increase in the conversion value is observed up to 8000 min in operation.

From kinetic experiments the controlling step of the whole process was found to be the chemical reaction on the active catalyst centers. The data fit satisfactorily to a first order kinetic equation with respect to  $SO_2$ , where the rate constant varies with the  $SO_2/O_2$  feed ratio and is independent of the  $SO_3$  concentration.

Fig. 4 shows the variation of the sulfur dioxide conversion to sulfur trioxide with the GHSV, at 450°C and two different SO<sub>2</sub>/O<sub>2</sub> volume inlet ratios. The SO<sub>2</sub> conversion data were taken at 6000 min in operation. The experimental SO<sub>2</sub> and O<sub>2</sub> inlet concentrations were between 400 and 1000 ppm and 3–6 vol%, respectively.

## 3.3. $DeNO_x$ - $DeSO_x$ process

Taking into account the performance of each catalyst,  $DeNO_x$  and  $DeSO_x$ , in their separate processes, a combined two-bed reactor has been designed where

molar conversion values higher than 90% and 80% for nitrogen oxide and sulfur oxide, respectively, were obtained.

Fig. 5 gives the activity results for this combined  $DeNO_x$ – $DeSO_x$  system. It is observed that the  $NO_x$  molar conversion is maintained constant at around 90–92% throughout the time in operation. The sulfur dioxide in the inlet gases performs as an effective promoter for the selective reduction of nitrogen oxides with ammonia, leading to increases in the nitrogen oxides molar conversions, probably due to the presence of traces of  $SO_3$  [27] produced by  $SO_2$  oxidation on the  $DeNO_x$  catalyst.

The  $DeSO_x$  catalyst seems not to be affected by the presence of traces of nitrogen oxides in the gas to be treated, and shows high activity in the removal by oxi-dation of ammonia giving rise to null ammonia slip.

The  $SO_2$  conversion slightly increases with time on line reaching a stable value of 80-82% after  $10\,000$  min in operation.

From the work carried out in this study the following considerations may be derived:

Molar conversions of 90% and 80% for NO and

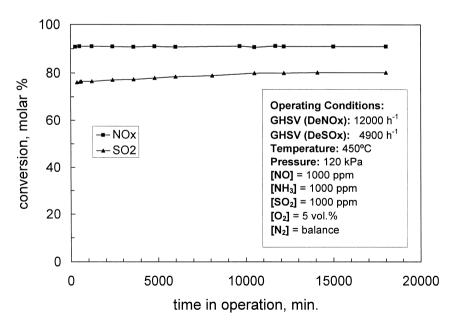



Fig. 5. Variation of the  $NO_x$  and  $SO_x$  conversion values with the time operation in the two-bed monolithic reactor.  $DeNO_x$  and  $DeSO_x$  catalysts.

- SO<sub>2</sub> were obtained, respectively, with null ammonia slip and no N<sub>2</sub>O formation.
- The use of a monolithic two-bed catalytic reactor presents the advantage of low pressure drop, two orders of magnitude lower than that obtained with conventional pelleted catalysts.
- The monolithic structure, mechanical properties and low sticking wall characteristics of both catalysts, allows their operation in high dust configuration.
- The reactor runs without heating between the two catalyst beds, with the subsequent technical simplicity and low operation cost.

## Acknowledgements

This work was supported by the CAM (Comunidad Autonoma de Madrid). Project 0057/94. We are also grateful to Dr. M. Yates and Mr. C. Knapp for valuable discussions.

#### References

- [1] W. Bartok, B.A. Folsom, M. Elbl, F.R. Kurzynske, H.J. Ritz, Environ. Prog. 9(1) (1990) 18.
- [2] B.K. Gullet, K.R. Bruce, W.F. Hansen, J.E. Hofmann, Environ. Prog. 11(2) (1992) 155.
- [3] G.A. Kudlac, G.A. Farthing, T. Szymanski, R. Corbett, Environ. Prog. 11(1) (1992) 33.
- [4] E. Richter, Catal. Today 7 (1990) 93.
- [5] K. Kusakabe, H. Kawamura, H.-J. Kim, S. Morooka, Fuel 69 (1990) 917.
- [6] H. Jüntgen, E. Richter, K. Knoblauch, T. Hoang-Phu, Chem. Eng. Sci. 43(3) (1988) 419.

- [7] S.K. Gangwal, G.B. Howe, J.J. Spivey, P.L. Silveston, R.R. Hudgins, J.G. Metzinger, Environ. Prog. 12(2) (1993) 128.
- [8] W.T. Ma, J.L. Haslbeck, Environ. Prog. 12(3) (1993) 163.
- [9] G. Centi, A. Riva, N. Passarini, G. Brambilla, B.K. Hodnett,B. Delmont, M. Ruwet, Chem. Eng. Sci. 45(8) (1990) 2679.
- [10] Mitsubishi Heavy Ind. Ltd., Japan Patent No. JP 56 048 251
  (May 1981); Japan Patent No. JP 56 053 749 (May 1981);
  Japan Patent No. 57 035 940 (February 1982); Japan Patent No. 57 050 547 (March 1982).
- [11] Hitachi Ltd. and Babcock-Hitachi K.K., Japan Patent No. 56 044 029 (April 1981); Japan Patent No. 56 045 748 (April 1981); Japan Patent No. 56 062 521 (May 1981); Japan Patent No. 56 105 733 (August 1981).
- [12] S. Kasaoka, E. Sasaoka, H. Iwasaki, Bull. Chem. Soc. Jpn. 62(4) (1989) 1226.
- [13] Haldor Topsøe A/S. Den. USA Patent No. 4781902 (November 1988).
- [14] D.C. Borio, W.H. Kingston, Processing and utilization of high-sulfur coals V, Coal Sci. Technol. 21 (1993) 451.
- [15] S.M. Durrani, Environ. Sci. Technol. 28(2) (1994) 88A.
- [16] J.A. Armor, Appl. Catal. B 1 (1992) 221.
- [17] Degussa Aktiengesellschaft. Germany, European Patent No. 622 106 (November 1994).
- [18] S. Blumrich, B. Engler, Catal. Today 17 (1993) 301.
- [19] Combustion Engineering Inc., USA, WO Patent No. 9618453 (June 1996).
- [20] P. Avila, J. Blanco, A. Bahamonde, C. Barthelemy, J.M. Palacios, J. Mater. Sci. 28 (1993) 4113.
- [21] CSIC, Spanish Patent No. 9 601 955 (1996).
- [22] Methods of Air Sampling and Analysis, 2nd ed., Am. Pub. Health Assn., Washinton, DC, 1977, p. 737.
- [23] P. Forzatti, L. Lietti, Heterogeneous Chem. Rev. 3 (1996) 33.
- [24] A. Bahamonde, A. Beretta, P. Avila, E. Tronconi, Ind. Eng. Chem. Res. 35(8) (1996) 2516.
- [25] J. Blanco, P. Avila, A. Bahamonde, in: Proceedings of The First Japan-EC workshop on Catalytic Science and Technology, JECAT'91, Tokyo, Japan, 1991, p. 153.
- [26] C.N. Satterfield, Heterogeneous Catalysis in Industrial Practice, 2nd ed., MacGraw-Hill, New York, 1990.
- [27] Babcock-Hitachi K.K., Japan Patent No. 56141819 (April 1980).